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ABSTRACT

1

This Semi Annual Report is a progress report of the UCLA Biocy-
beri.etics Control project directed toward the -evaluation and
impliementation of man-machine command and control procedures
that incorporate neuroelectric signals directly derived from the
brain. 3

This document first reports on the current state of the pro-
jects A first milestone has been reached: one such man-machine
loop has been operating for several months at nearly operation=-
al performance levels;i In the communication protocol of this
Y"MASTER-ROBOT" team, the computer robot executes commands encod-
ed in the master’s occipital brain waves (as SINGLE EPOCH VISUAL
EVOKED RE“PONSES), To send a command the master visually selects
the corresponding command symbol from a displayed set. Symbol
pattern and color have been used in the command alphabet.
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lele ORIENTATION

l.1.1 History

The present document is the Semiannual Report, covering the
period June 1, 1975 to January 31,1976 for the UCLA Biocybernet-
ics Control in Man -Machine Interaction Project, conducted under
ARPA contract to the San Diego State Foundation NOQO!4=76=-
C-0185 and subcontract # 225076. The long term goals are brief-
ly reviewed and updated below. The ultimate goal of this project
i1s the evaluation and implementation of man-machine command _and
control procedures that 1incorporate neuroelectric signals
directly derived from the brain.

l.1.2 Neurocybernetics Command and Control Paradign

The use of bioelectric signals for command or control in
the man-machine dialogue can best be discussed under a scenario
involving man in the role of operator or “MASTER" (M) communi-
cating with a ROBOT-SYSTEM (RS) The RS can be a sophisticated
aircraft, a computerized command system or a number of other
man-machine systems. Quite generally it can be said that com-
munication between M and RS takes placs through some kind of
computer terminal albeit probably one that was designed espe-
cially for the task. An aircrart cockpit or the control console
of an operation room are essentially computer terminals in the
present context. In command and control applications, the
master-robot dialogue relate to specific events occuring in the
relevant outside WORLD (W). The world in this context consist of
the whole environment that affects the man-machine mission. It
will normally include the physical manoeuvering space needed by
the man-robot team together with other manned or automatic Sys-
tems operating within the same space in various relations and
capacities: ( friend or foe, active or passive etc..) Thus % can
be a battlerield, a theater of opsrations, a trajectory in deep
Space etc... In training situations W is simulated on the com=-
puter system, together with the RS itsalf., The RS assesses W
through its sensors i.e. as a quantitative set of numeric or
lojical variables. The master observes W using visual,acoustic
and tactile 1inputs 1in the form of a set of displays and mes-
sajes combined with actual frames of the outside world. Thus
his input will include some of the sensor data as shown on his
instrument panel (while other sensor data will bea xept out in
automatic control loops.) Both partners, the man and the
machine, therefore share some elements in their input sats but
operate on different models of i, These models are central to
the decision strategies. T[he model on which the artificial
intelligence of the RS relies is aiways of relatively low dimen-
sion, limited as it is to preassigned classes that are esta-
blished in terms of the sensor variables V(d). The master Aalso
relies on a model of the world but in thz form of a mental per-
ception of the global situation that is or imarnsely larjer
dimensionality and capable of adaptation to uniorese2n
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circumstances. It rests on sensory capacities and on a memory
repertoire at the same time less precise and mcre adaptive (than
those of the RS macninery). It also benefits from the unique
capabilities of human perception and intelligence to evaluate
input patterns in the complete context of the known situation
and to reach quick decisions between perceived alternatives.
The efficiency of a man-machine team is tied to the optimization
of the division of labor, limiting the human burden to decisions
lying at the appropriate level of abstraction while placing as
many ancillary functions as possible under automatic control.

l+1.3 The Application Range of the Neurocybernetics Approach

It is useful to recognize the instances that require or
Justify the search for neurocybernetic channels of communication
between master and robot, i.e. the supplemental, remedial or
unique advantages gained by adding this capability to the robot
system. Four different situations appear to validate the neuro-
cybernetic approach, because of conditions that prevent or limit
the use of normal efferent motor channels (such as voice, key-
board, switch, joystick, light-pen etc...) These situations are
respectively referred to as Blocking, Dysfunction, Saturation
and Latency in terms of the availaoility of the information
that is to be extracted from the neuroelectric signals:

a) Blocking®: Information is willfully blocked (stress detector
application) or else information is sub-conscious or subliminal
(psychotherapy, eidetic imagery,free association, memory prob-
ing, face recognition etc...).

b) Saturation: All motor channels are busy (Hi-performance
craft in complex combat situation) In that case skeletal output

requirements exceed the subject’s capacity for real-time con-
trol.

c) Dysfunctions Normal motor channels are disabled, either per-
manently (prosthesis, limb control, sensory substitution etc...)
or temporarily (hi-performance aircraft in hi-G pull, spacecrart
occupants in low metabolism state, zero-G etc...)

d) Latency* - motor channels would be slower, i.e. have longer
reaction times than that provided oy the neurocybernetic chan-
nels (emergency control, selection among set of countermeasures

i.e. alternative subroutines as in complex command and control
environment).

Of these situations, the three last are clearly relevant to
master-robot interaction.

BT Ty e —
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l.2. REVIEW OF RECENT ACCOMPLISHMENTS

le2.1 Overview

Definite operational success has been reached on the first
phase of the program namely the correct recognition and classif-
ication of stimulus identity in a small alphabet of possible
stimuli, in single epochs of EEG visual evoked response. Stimu-
li used are flashes either patternless in a set of colors of
patterned in one color. Because of the clear differences in
codes, patterns and colors are expected to be identifiable
separably or in combination dlthough no experiments with combi-
nations have b2en attempted yet. The experimental strategy and
the real-time data processing have been perfected in a succes-—
sion of experiments and the overall approach is now quite suc-
cessful with almost any subject. Expected accuracy with random
subjects 1is about 80%. The best subjects operate consistently
over 90%

l.2.2 Data Generation and Processing

This level of performance has been obtained by submitting
each epoch to a sequence of processing steps namely: (in chrono-
logical order)

l.2.2.1 A Priori Artefact Rejection: This step that takes place
before actual data processing of the epoch is most important in
the general strategy. The frontal pole is continuously moni-
tored for excursions beyond normal range. The real-time experi-
ment monitor aborts data taking when such activity is detected
during the half-second preceeding the actual epoch. If it ap-—
pears during the response itself, (after stimulus) acquisition
is completed but the epoch is rejected.

1.2.2.2 Wiener Filtering: This is an optional real-time filter-
ing (based on the covariance matrix derived from the data during
training) .Its function is to optimize the signal-to-noise ratio
from the standpoint of covariance information. The Tfilter has
been the object of a communication at the recent IFIP Conference
on Optimization in Nice. Wiener filtering is soon to be com-
bined with time-varying bandpass transformation to enhance fast
components at the beginning of the epoch (see Fast FEG com-
ponents -UCLA-Biocybernetics - Final Report 1975)

1.2.2.3 Stepwise Selection of Best Samples: The ten best sam-
ples, from the standpoint of discriminant power, are selected in
a stepwise manner, i.e. by order of decreasing powzr, from the
five (electrode)channels using an in-house (BCI) version of the
no# classical step-wise discriminant procedure used in statisti-
cal packages such as the new Biomedical P7if. Tne BCI program is
interactive and designed to run in real-time out otherwise would
give 1identical results. Selection is performed by recursivaly
calculatingy F-ratios , using a training set containing ten to
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one hundred responses for each stimulus type.

le2.2.4 Recursive outlier rejectiont A linear decision rule,
(Bayesian model, assuming ncrmalcy of distribution and identity
of variance for each type) is obtained on the basis of the
selected samples. The training set is examined for outliers
(i.e. epochs in the training sets that the decision rule mis-
classifies or fails to classify with an adequate margin) and
such epochs can be removed. The program then returns to the
stepwise ‘discriminant selection to correct the decision rule.
The recursive outlier rejection scheme has not yel been exten-
sively tested and is not yet implemented on-line.

The decision rule 1is calculated using all non rejected
epochs, and applied to subsequent epochs as they are collected;
each is then assigned a probability of affiliation to each of
the groups.

le2.2.5 Real-time defaultings After the initial processing of
the training set, i.e. in subsequent epoch-by-epoch classifica-
tion, the former outlier rejection is replaced by the confine-
ment to a "don’t know" catejory of any epoch that falls beyond a
given distance margin for one of the stimulus types.

1.2.2.6 Decision Rule Updating: A recursive *piggy-back" oro-
cedure is available as an option for on-line experiments. In
that case, blocks of (usually 40) epochs, called epoch strings,
are sequentially treated as training sets for the next string.
This provides a means by which the decision rule can be tracked
as it undergoes changes due to task learning, operant condition-
ing or any other cause.

1.2.2.7 Neurocybernetic loop: The real-time classification of
evoked responses has finally been incorporated in an actual
man-machine communication scenario. In this scenario the master
is required to run a maze displayed on a graphic terminal. The
moving target in the maze (the "mouse” or "mobile") is directed
by visually acquiring (i.e. directing the gaze to) one of four
visual "keys" that frame the field of operation and thus signal
"up", M"down", "left" or ¥right". A diamond shaped, checkerboard
pattern, that appears briefly between the keys, produces the
evoked response, with the encoded information.

Each stimulus type, as soon as it has been identified 1in the
(occipital) EEG response causes the system to implement the
move$ thus each successful move constitutes reward. The
resulting operant conditioning scheme is therefore directed to
the quality or accuracy of the classification in a non-specific
way. That learning takes place can be seen in the results of
successive runs in the piggyback mode. Typically an increase in
performance 1is recorded over the two or three first runs and
will stabilize afterward. The nature of that learning is not
elucidated yet, but since these experiments clearly deal with
"exogenous" comporients of the evoked response which are presumned
to be relatively resistant to operant conditioning proceduras,
it is reasonable to sugjest that the increase in performances is
probably due to the avoidance of interfering processes such a
muscle artefacts or even the blocking out of interferring mantal
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activity (casual evidence for the latter is found i the verbal
reports obtained from the subjects in recounting their percep-
tions during experiments)

The maze experiments have been the object of a presentation at
the recent IEEE Symposium on Man Machine and Cybernetics in San
Francisco.

With regard to these experiments and the entire first-~phase
of the project it is felt that a limit has been reached in the
procedure . No radical change in the data processing approach
will be necessary to maintain high levels of performance over a
large range of similar experimental conditions, and we would
venture to say, with acoustic or tactile stimuli as well. The
relatively minor changes that are now in the works and in par-
ticular the time-varying Wiener filter are expected to add a few
percents to the current levels. In addition, new low noise EEG
preamps are expected to increase the performance of the subjects
whose brain signals were smaller than average, therefore some-
what buried in the instrumentation noise. Present amplifier
noise is | to |.5 microvolts peak to peak; the new amplifiers
will be better by a factor of five in noise, and 60 db better in
common mode noise rejection. Thus the first phase of the pro-
Ject (time-locked visual evoked responses with stimuli that are
(easily) subject discriminable and exogenous signatures in the
EEG) is to be considered terminated.
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CHAPTLR 2

LXPERLIMENIAL BPAxADIGHM

Man comwmunicates Ly perceiving his environment and
etfecting a structured response tc 1it. Thne structure is
reflected ib an ordered selective attenticn toward each
particular ccmponent of tane perception, along with an
interactive prctocol estaklished for information transter
with his environment. This research exawines responses to
inputs orn the visual and augitory modalitiess, The respcnses
observed are electrical fluctuations sensed on the surface
of the scalg. These signals represent a simgle
non-interfering schese to ctcerve the early components cf
the biocyberretic prccesses of the human narvous system.

The parauigm to examine and deronstrate man-machine
ccemunicaticr has peen igplemented in tase Brain Computer
Interface labcratory. (A current aescription ot this

facility as it applies tc this research is provided in

Appendix I,) The paredigm can be visualized through a

scenario in which the principal tunctions ate parformed by
three e€lenents, the wman, tne machire, and the 2nvironment.
Tae rollowirng notation and functional interactions rrovide a

description ct tae role ot these elements in the paradign.

e
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1) d4an as master (M) =-- the master observes a robot
immersed in a world and learns to generate messages,
accordiag to ccnstraints imposed by the world, and the
robots capacity for understanding, so that the robot
respdnds to the master's gcal.

2) The amachine as a robot (R) =-- the robot learns to
intirpret messages trcm the master and behaves
according to its awareness of the world and the
constraints imposed by the wcrld.

3) The .environment as the werld (W) =-- the world defines
the universe ot disccurse in the ccmmunication bLetween

master and the rcocbot and constrains their bashavior.

£:2 COMMUNICATION ANL fEEDBACK cCNTBOL

. Figure 2-1 presents a simplified block diagram of a
tiofeedtack ccntrol locg emplcyed in the experiment. The
robot and the world are simulated by the computer system and
thelr irteraction is displayed to the master, a human
subject, by a cathode ray tuke (CRT) display. The subject
visually observes the rocct's behavior as displayed on the
CRT, and Lszues messagyes to ccntrol the reoot according to a
prctccol with the ccmputer systenm. This <conputer systen
sibulates the robot and wcrld with a data collector, uessage
classifier, and robot simulatcr. The data collector and

wassage classifier retlect the worla's constraints on the

rcbct's perception and interpretation of the master's

Bl L
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messagyes, while the robot siwulator implements the decisiors
made according to the werld's censtraints on its behavior.

The EEG biofeedback exhibited in this research has
diLfferent objectives and ioplementation than previous
hioteedtaék experimacts ot this type, In tanis work,
biofeedback is an element in a wman-machine dialog, rather
than sisply an indicatcr of behavicr modification. The role
of the rcbot is central tc the understanding of this concefpt
of feedback contrclied ccoaounicaticn. It is through the
behavior of the robot that the master is able to determine
that his implied ccmmands are getting through, as the
behavior of the robct constitutes the feedback signal.

The data processing Capability of the Brain Computer
Interface latcratory germits analysis of single egochs of
multi-channel 322G data, and the techniques developed can
1dentify (cn a relatively uwcdel-free basis) amplitude,
treguency, and phase attributes of the neurocelectric signals
involved in the messages transmitted tc the robot. This
provides a substantial variaticn and expansion rrom earlier
techniques wnere simple filters Jere used to detece cyclic

asplitude pekavior 1u EEG signals.

4=3 Current fxpecivental Ipplementatiop
1lhe initial scenaric reaturcas a (rowot) umouse
attemptiny tc free itselr trem confinement in a maze. The

robot wouse wmust wove ug, dcwn, lett, or ri nt along the
13 ’ ’ g g

Chaunels of 4 mace wauile atterpting to avoid contict with
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the walls or unnecessary travel down blind alleys. Pigure
2-2 presents a diagram of a wraze in whkich the wouse is
initially confined at the center. The shortest path to the
exit, in tne lower left ccrpmer, contains an egual number cf
moves in each direction. The experimenter can vary the
mouse's perception of its wcrld with several options that
retlect difterent 1levels of intellectual capability in the
robot. For ionstance, the sisplest option depicts a dumd
mouseé that rpays no attention to the proximity of adjacant
walls, and has no preterence to any particular move pricr to
receiving a message. Other cptions allcw for smarter robots
that are aware of adjacant walls or fprevious moves. In
addition to illustrating tne vailue of the robot's
intelligence in this aprroach, these options provide a
mechanisn fcr the experimenter tc adjust the requirements cn
;he master's message generating capacity. This provision is
invaluable in letting the human subject gradually develop
nhis neurocylkernetic control capacity.

The wmajor constraints on the communication Letween
master and rcbot can be illustrated by describing the tinme
seguence of the uata collection and ccmmand classificaticn
processess. Fijure 2-3 presents a simplitied ;iagram of the
activities and events invclved in a single cycle of the
ccmmunicaticrc protocol. This dialog proctocol is the basis
tor the adanalysis of the data epochs as a time synchronous

exchange between the master and tue data collactor. The

initial event of the cycle is a ready cue followad by a wait

g
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interval (0.8 sec) to allcw the master to sa2lect a command.
The ready cues include a time coincident beep and LED
illumination at one or all vertices of what at stinulus time
will appear as a diamcnd <shaped checkerboard pattern
superimpoﬁed on the CRT display. A strobe 1light provides
the interrupt stimulué, imgressing the checkerboard pattern
on a portion of the retina, depending on which LED the
master directed his gaze during the wait Feriod. Figure 2-4
Presents a diagram of the superimposed checkerboard and LED
display, and also the fcrim of tais pattern as it wculd
appear, given fixation at each vertex. The wvisual evcked
response tc the stimulus is transaitted from the master to
the robot where it is classitiad to provide the command.
The robot simulator carries out the command and moves the
mobile accordingly.

1 In the subseguent "veriry" phase the changing disglay
constitutes a stimulus tc the wmaster that confirams cr
infirms the successful conclusion of the command. The
resulting evcked response can then be transmitted to provide
a "verify" opessage that can either cancel the last ccaaand
or mcdify the rchet's ktias in the next cycle.

The nature of scalp electrical activity necessitates a
somewhat invclved 1lcyic tc test the properties of the
signals during each activity of the cycle. Artifactual
signals of apparent randcm cccurance can Rask desired
signals and wust be identified and separat=a. The artifacts

can result tico such influences as wmuscle activity, eys
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movewments or blinks, alpha waves, and sleep spindles, The
amplitude of these signals can te several tiwes those cf
normal respcuses while the freguencies can vary from 1 - 2

hertz fuor eye artifacts, 8 - 13 hertz for alpha and

srindies, and 50 - 75 fcr muscle activity.

2

Betore the master can e€xe€rcise ccntrcl of the robot, an
initial set ct the siynals must pe analysed. The pracess of
d2veloping a reliaktle <c¢hannel oi ccamunication invclves
acdaptation ot the deccding algcritnms implemented by the
CCmputer. This 1initial phese 1s then complemented Ly

bioteedback as master exgeriences the etfects of changes in

his signal generaticn. Cn-line real-time data processing "
tectniques are engployed tc achieve this biofeedback
learning.

Thus the sequential prccedure begins with an epoch
string that involves ccllecticn of an initial set of command
data mesn:iges. This set 1s analysed to produce a
classificaticn funrcticn (CF) whlch 1s then emplcysd to
segquentially classify 2ach ccamand message gererated in  the
nsxt <«poch string. Thls subpsequent rhase 1avolves data
collection, ccmmand classification, and activation of the
rotot bdsed cn the resulrts ct the classification. The robct
action , cbserved by the master, constitutes the Leedback
signal and subsequently teccmes the stipulus for the varify

nessage., Tune coamand messages are theh cowdired with thesa
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cocllected 1in tne trirst epcch string to produc= an updated

CF, that 1inccrporates the cffects of training and
adaptation. Similarly the verify message sz2t from the
s2Ccnu  epoch string can te analysed tc produce a

classificakicn functicn (VF) which will tken be employed to
Suksequently verity Iécmmand interprotation in the npext
phase. This process 1is repeated through several egoch
strinys with the data collected in each phase refining the

M on

The detailed frctcccl between the master and the
on-line data cullector is illustrated in Fiqure 2-5. This
Gliagram presents sequentially the segaents of the data
collection cycle and includes elements of the controlling
icgic tor data acquisiticr and artifact handling. This
enatles the master to sychronize his function with the data
collection, <classification, display, and storage functions
that the Gata collectcr jertcrms. The presantation cf
biofesdtack siynals tc the waster provides two types of
inrcroation. The first is characterized ty the cathode ray
display provided by the ccaputer and preserts the results cof
the clagsitication c¢f toe ccomand signal, i.=2., the actiecn
of «the rtobct. the sccond signal is proviaed by a status
panel ccnslisting of a series c¢r cclored lights. Thece
ligats display the present status o. the data collector. i

red ligyht indicates the detecticn of an artifact in the

e
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dats, This signal will remain for a short interval
delaying the restart cf the collection cycie and eventually
allcwing the master to alter his behavior ir the directicn
Ot artifact reducticn, while the data ccllectcr restarts the
real-time. data collecticn segment. Taus the master is
trained to produce signals that pass the artifact filter.
The design of this artifact detection filter is an important
aspect oi the experimertal pafadigm and will b2 discussed
later. The Figure alsc illustrates the sequence of tests
perfcrameu tc identify artifacts. These tests are performed
at tne oDbeginning of an epoch, after completion of the
command message, and after the verification nmessage. If
artifacts are detected at the first two tests, the epoch is
atandoneu and rescheduled after a short delay with the
response of the rokct being delayed until the next egoch.
An artifact during the verification results in "no decision"
regarding the verification. The epoch is not included in
future C¢ generation but the response of the rokot is
hanuled according tc the cpticns availatle it the e xperiment

ccntrcl paraceters.
2.6 Bioteedback displays

The wmain bicfeelback sigynal to the master 1is providad by
the cathode ray tute which displays the world rodel and the
rcoet's acticns in this rnan-sachine Gparadiga. Figqure 2-2
presents an exawple of such a display. I'ae robot in this

¢xample acts on a wcrile, "the wmouse™, displacing its
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position in a two-dimensicnal wmaze. The comaands invoke
changes in pcsition cf the motile, Namely, move up, nmove
down, move left, or move right. The numbers appearing cn
tne diagram represent decisicn points: the pobile waits at
a Jecisions pcint fcr receipt of a command which defines the
directicn in which it is to Froceed. The mobile then moves
in this direction at a fredeterwined rate and halts at the
next decisicn point and waits for the next command from the
master.

The alphanumeric characters appearing at the top of the
display dencte cpticral wmcdes of behavior. The decision
mncde restricts the wmotile tc move only to an adjacant
ascision pcint, unless it hits an adjacact wall in which
case it raturcs to the present decision point. The wall
rode lets the mobile mcve until it strikes a wall and then
Stops at the decisicn pcint near the point of impact. This
mode involves fewer decisicn pcints. Upon reaching the end
pcint (x) the molile 1is auvtcuatically returned to the

starting point.
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3. CLASSIFICATION OF BIOCYBERNETIC SIGNALS

Ccnvéntional statistical analysis technigues have been
ewplcyea to classity singyle epochs of biocybernetic data to
one of a set of groups, vhere each group is associated with
a specific command to the wachine under control. The
principle questions invclved in the mathematical treatment
Of tae data epochs includes the choice of a decision 1loygic,
a mathematical model of the statistics of the data, and a
procedure to etfriciently identify the components of the data
epoch that provide the most intormation. Bayes theorem cn
'inverse' c¢r postericr probakility in combination with
stépuise discriminant analysis technigues as descrited ky
bixon tora the basis of tha approach. The decision logic is
based on the Bayesian technigue which combines pricr
inforwaticn with transmitted information to produce

posterior prchanilities tor group classification of the

epoch. ihe term jcsterior denot2s the ciact that the
prccabilities are determined after incorporatiny data
extractea ftrco the fresent epoch, The postericr

protatilities 4re unigue tc the present epoch and Tepresernt
maximum likelihood estiuwators of the psarcentage of these
tyres of epochs that can be found in each groug. Tha
statistics cf the wuata egpcchs ara Characterized by

multivariate normal tuncticne wita ditfercnt meins for eich

. b
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group and a covariance matrix that 1s constant over the
Jroups. The Fisher F-statistic for group separation is the
seasure emplcyed to evaluate the individual couponents cf
the data epochs and a stepwise procedure selects 4 subset of
eyoch variakles that prcviue a good, but rot necessarily
ofptimal, scheme for extracting the signal components frco
the data epoch.

The classiticaticn of the epoch is accomplished Ly
assignicy the epoch tc the group witia the maximum postericr
probability, given that this posterior probability exceeds a
specified threshold. An assigoment tc a group is nct nade
when the waximum pcstericr gprobability is lass than the
tureshold. Rather, the epcch 1is placed in a ‘*default’
category that results in no decisicn as far as the system is
ccncerned. Epcchs placed in the default category may then he
excluded ftrom use 1in determining subsequent discriminant
functions., This apprcach attempts to isolate those efpochs
that are daprarently not representative of the zet ugon which
the present discriminant function was deterained. While
this approach wmay appear to favor the 'status guo' it will
accept change, das lcng as the threshold is not toe high and
the changes are gradual and do not produse a set of
posterior [fprctapilities that are all less than the
tursshold.

The prior information represents what was known before
tne [resent epoch was received and incorperation of this

prior intormation into the classiricition furction modifies

» |
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the interpr=tation or the ccrmands generated by the subject,
and thereby shapes the vehavior of the @nan-machine systen,
Knowledye or the state of the machine just prior to the time
ot the epoch is used to weight the chance that each of the
possitle cowmanus are enccued in the epoch. This effect is
characterized as a measure of local context and varies as a
tunction of the state of the machine. Thus the command
generating capacity of the subject achieves "apparent"
adaitioral «aimensicns c¢f ccatrol in the form of special
behavior at particular conditions. The following sections
provide a develcpment of the functions used to irplement

these technigues.

- S D M w S I W SRS S e o S D

. IThe pcsterior prcbabilities constitute a saet ct
mutually exclusive estimates or the chance that a given
epoch should ke associated with each of the ccmmands. These

protavilities are determined from the Bayes e uation where:

E(Ww |X) = =cccccmrcrcccccna (3.1)

E(w ) p(X|w)
K k

whera:

Y 1 e aa e e L i e i Ui U e e
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X = a 'd' dimensioned data vector

extracted from an epoch.

pP(vw ) = pricr prokability of grcup w .
i i
F(XJw ) = conditional probability data vector X
i
is frcm group v .
PRIOR ERCBREILITIES »

The uesired coammand for the machine under control can
be highly ccrrelated with the state of the machine at any
particular time, and knowledge of this correlation provides
the tasis fcr deterwmining the prior probabilities for the
Bayes egquaticn.

The pricr probakilities are determined for the maze
e@xperiment according tc several schemes. The first pethed
involves exawining the space asout the mouse as it reaches
different pcsitions 1in the naze, ana assigns lcu
protatilities to commards that would move the mouse digectly
into an aujacant wall. A seccnd method is designad for tha
'wall' mode, where the nouse proceeds down a chennel until
it strikes a wall. This m2t hoa determineas pricrc
probabilities at each position in tne maze such that one cor
three ccamards is [pcssiblie, back-tracking the Fcevious
ccnmand, or either direction orthogonal to the previcus

coummand. Continuing in the same direction as th2 previous

e

ol




27

compmand is net desirable as the previous <command will
position the mouse at the end of the channel. Back-trackiny
is weighted according to the probable error in the previous
command, while the cogplement of this error 1is divided
evenly to weight <the twe crtaogonal directions. A final
method represents a centrcl ccemparison and assumes that no
information is available, thus the prior probapnilities for
each coamand are equal. The following equations define the

pricr gprobakilities for the aitferent schemes in the maze

paradign.

1) Smart mouse:
( ir path i is obstructed.

A3.2)

—
:

—
AL

1/n K if path i is clerr,

where:
j = a peziticn inaex in the mace.
n = the nusker ct clear paths at j.
3

T aiika
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2) Blind aouse:

0, continuing the conmand from j-1.

Pw ) = C L1 - p(n IX) Jo back-tracking the '
1 3 i j=1
command at j-1. (3.3)
( B(w }X) / 2, either command
i j=1

orthogonal to j-1.

3) Cumb wmcuse;

p(v« ) = 1/4, for all gatas at 3. (3.4)

13

It is pcssible tc detine many such schemes to temper
. the results of pattern Cclassirications witk pricr s
infcrmaticn. Those just describted produce behavior where the
mouse exhibits some partial knowledge of the proper ccamand,
based on the ccntext of the position in which it finds
icself, and the ccammand génerating capacity of subject can |
be selectively enhanced withouat requiring adiitional

dimensicns ct centrcl.

> > W - . — i S . S — —— — T v — > —
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The conditional procatilities are daterminea direccly
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trem eack epcch ¢t biocybernatic data geheratad by the

Subject., These probabilitiecs represent measur>s of  tho
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like the data received ticm the susject in this epoch.

The biccyoernetic dJata extracted tconm an €poca
constiturtes a vector which is a sup-set of the sarples ct
EEG voltage fluctuaticrs that ccmprise a data epoch. The
stepwise procedure =rployed to select the vecror components
from the data epoch will be describked later. The

multivariate normal wuistributlion is a convenient candidate

for a mcdel ct the statistice c¢f the dara vector. This
distribution tuncticn is defined by the followiny eyuation.
t =
exp [-0.5 (X-U ) (5) (X-0 )]
i i i
Eisin i = ct=sagiat e e et L R L LR D (3.5
b
d 1/2
(2 ) I51]
s i
where:
U = mean vector trom group w .
i i
§ = covariance matrix of vectors in group 4 .

i i

y sigynificant reduction in coaputational coanvlexity ana
datu processing reguir2ments can  be achieved Lrf  the
cevdliances of the Tultivariate distribution tunctious for
@ach c¢lassitication yroup are assumed tc pe egquirl. This

mcds: with the assumpticn ot =gual covariances aony  GLOUES

P
e g ki

4
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is not inccnsistent with studies of the nature ot EEG
amplitude statistics. The adeguacy of this simplified modeal
in characterizing the mnature of the biocybernetic data
vector 1s presented in the discussion. The equations fer
the ccnditicnal probabilities with this simplified model are

thus:

£t -1
exp [-0.5 (X-U ) S  (X-U )]
i i
BAXIW ) = mmmemmmmmeeee oo diXt  (3.6)
x d 12
{2 ) Is1]

Incorporating this wocdel into the posterior probability
equations and eliminating terms which are independent of the
classificaticn grours, prcduces the following classirficaticn

functicns.

Expandinyg the oxporentiated term jgives:

e ,.m,,,l
B
5.
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t -1 t -t t -1 t -1
b ) * =08 s AN RS D T E M) B
i i i i

Tie Iirst ternm is independent of *he classificaticn yrougs
and can ke eliminated frcm the runmerator and d=2nominatcr,
and the seccnd and thira terms produce identical teras ugpcn

exrpansicn, sc that the exponentiated term beccmes:

& 1wl + -1
o) #= =045 (B8 ) 08 % (3.9)
i i i
which can he rewrittzn as:
Ehil = & + 5. (3.10)
A i i
Where:
t -1
B = dJ 8§
i i
a = =0.% (B U)
£ i1

and the posterior prcuanilities reauce to:

it T R e <o i
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p(w ) cxp(a + B X)

PW X)) = =-ecose-mesoceecceoooo C(3.10)
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SELECIICN OF VARIABLLS

The iirst step toward selacting a set orf variables rfrem
a Liocybernetic ddta €poch is the developmen: of 4 criteria
ror measuring the relative perfcrwmance of the variables in
saparating the classiticaticn groups. The criteria oapleyed
in this research is based c¢n the familiar techrijue cf

€r which eximiues the ratio of suns or sgaare deviations

=

Fis
oL th2 withir group wmeans abcut the grand wean to the surs
of sjuare deviaticns about the within gGroun means. The
dSsubpt1on Cf =gyual cCcvariances amony the Jrouvs nrovides
fot the dJeterminaticn o¢f an F-statistic for sets of
variavles frcm a populaticn ot epochs. Tre significance cof
tane JLCUp <£eparavility of tne witain grour medans of thage

variacles can tien be teoted agalnst the chance aspect ek '

%]

the variaticr cf these group sRans. .
v
Th= encltal solutrion fcr tiae s2t ¢r , variaovles <that
maxlclizé the separatici ¢t the yrouus involves the soluticn
oL a systeaa cf lineal alyebraic ejuations. Trese 2udaticons
TLEBLALDE an

ArE f2vedep=d lrow a4 ratic Ot variainces that o

F-statistiv rer an acwitrary eub=ses ot apcth variables,

R ——



33

Tne variances tor theé sub-set ot variables are determined
frcw a selection vectcr and the suks cf sgyuares aund
cross-prouucts matricies of all tne veriasles 1n the epoch.
Two matricies are derarea, thre first is rfer the witala group
means about the populaticn grand wean and the sacond is fer

the variavles about the apiropriate witanir group mearns.

These matricies are defined as follows:

U
L
I
—
[apd
]
{84
~——
-
c:
]
(e
—

(3.12)

where:
S5 = the sums. 0f s4yuares anc cross-~grcducts
P
matrix for tihe within yrcup weans
actout the populaticn grand mzan.
| = a vecter cr all variaules iu an epoch.
U = the wilthin group aean ot 2.
|4
" = the populaticn yrand wean of L.
P
Similarly, the wituiln grcups SHs e SIuares and

Cres@E=-pToducts WATLAX CL ThE LALY VEEHLL 18 Gstifed Bpe

R T, | eo—
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The F-statistic for @ particular sub-set ot variables

can fke definea as:

t
(n-g) v S5 V
F
F ZE =S ETSISTSISIS eSS (3'114)
t
(g=1) VvV 55 v
K

where:
) n * numter Of epcchs.
’1\
g = nunker of classirfication groups.
V = a vector uith arpitrary binary

elemsnts ter selecting variables,

1 tc select, 9 to reject.

The selection c¢f the set ol epoch variables +hat
maximizas tne abcve F-ratic can Le achlievad through
differentiaticn of e€g., 3.14% with reapect to the selecticn

vactor ¥V inu ¢guatiny the result tc zero, giviug:
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t t
F 2(n=-4) (V $3 V SS V -V S5V SS V)
K E P X
- o eeeecaceccoceccacacasee - —--—-—-——————- - = 0
t 2
v (5-1) (V SS V)
k

t
(g=1) V 55V
K
where:
t
V S5 V¥
E
t
VvV 55 V
K

The so0lution 0f eq. 3.1t is equivalent to tne

or tne rcllcwing systam ¢i linear eguations:

The stepwise proceaure cr Efroymssen 13 e

(3.15)

(3.16)

{3.17)

uticn

v

-

35C

(3.14)

systematicalily solve tnese eguations and thareby select  the

variaoles tred the <pochk. anls tochuiljue alse tefmlnates tae

process waelk the signiticance of the contriluation

St all

varzacles rct yot selectea fallr below a présze level. fhis

e T i L e o
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prccedure tests variables in the selected sart (Lf  anry) tcr
removal from the set, and then tasts variables that have ncet
yet been selected for inclusicn in the set. The F-statistics
or the individudl variutles are compared tec P-to-remcve or
F-tc-enter devels tc deteraine the course of the stepwise
selection. 1The process is terminated when all variables not
yet incluued in the set pcsséss F-statistics less than the
F-to-enter level,

ihe stepwise techrigue employs the Gauss =zliminatica
methcid, d4as described o0y Crden , for the s=oluticu of the
simultaneous eyuations. Initially the variable associated
with the largest F-statistic 1is selected, given that it
exceeds the [F-to-enter criteria. This variable is

eliminated £-on the matriy by the rawmiliar pivotal g

of the succeeding

4]
—
[¢))
}=
19}
o]
[ad
1))
W

transforwiat - ns where the
ij
matrix are generated by piveting the present matrixz arcund

the selected variable, acnoted bere Dby tha subscript AK.

Tae rules fcor uvdating tie matrix are submarized as follows:

EWG_AW.AM\M L L o B
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a - a a / a s 1f 1 # k, j#Kk

ij ik k) kk

a / a ; ifF 4 &Y, 3 Bk

k3j kk

a = (3.19)
i)

-a / a H it 1 # k, j =k
ik kk

1/ a 0 if i =3, § = k

\ kk

Iypically, the variabtles in the ©Oiocybernetic data
egochs are ccrrelated over 1intervals of several adjacant
variavles, that 1is neighboring variables tend to exhibit
sigilar auwplitudes cver a pcpulaticn cf epochs from the sam2
classificaticn group. The abcve pivotal +transformatiorns
€orrect tue variables in each succeeding matrix for 1lisear
ccrrelation with the cselected variable so that the
correlated nature ot tiocypoernetic variables is
systematically handled. However the <finite precision cf
digital jyrocessing requires an auditionil tolerance tesc
Ericr to the selection c¢tf a variable to reduce +the
possitility ct aegeneracy when a variarle is approxinmdataly a
linear combination of ctner variables. Irus 1f tue majnituds
0L a4 uUlagonal element ct the matrix in 2. 3.18 is less than
a tclerance cf 0.01, that variable is ot a candidate for

selection.

r”
= ek



. A | e il “————wv—wj
A

38

4 EXPERIMENTAL RESULTS

This chapter presents a sutmary of the results obtained
in the laboratory with an initial group of seven subjects cn
the mpaze ccrtrcl exgperiment., The subjects are five females
and tdo males. Individual exprerimental sessions of about two

hours were ccnducted as described below.

METHQODS

Standara Grass silver disc elactrodes were applied with
electroconductive paste at six locations on the scalp and to
both ear-loces, and =2lectrode impedance was always less than
10,000 ohas. A summary of the elactrode sites and channel
confijuraticns 13 [rresented in Pigure 4-1. Channel eight
(Fpz - 0z) was used as an artifact deztection channel. The
legic for detectiny an artifact involves counting the
aaplituce excursions tnat exceed a threshold inm a4 specitied
time intecval. The analoy EEG signals are amplified over the
Eandwidth ot 1.0 to 76.0 Hz., and digitized every 4.0
millisecouds, A dita e€poch consists of a set of sanmples
collecteu notu oefore and after -~ visual stimulus.

Stimuli consist ot bri2t (30 micresac.) flashes of a

7

xencn strooe light (10 lux illuminance2 1n a coliicated

. "N
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FIGURE 4.1

TOP: Diagrammatic representation (after Michael & Halliday, 1971)
of the relative positions and orientations of hypothetical di-
poles connectea with the central and peripheral parts of the
upper (at 5 o“clock and 3 o’clock) aﬂd'lower (3 o’clock and 4
o’clock) visual fields. These dipoles are disposed to account for
the early (80 to 100 milliseconds to peak) positive voltages seen
at electrode 0z (referred to ears) when the lower visual field is
flashed (UP command, see Figure 7, Channel 1) and the surface
negativity at 0Oz following upper visual field stimulation (DOAN

command, see also Figure 7, Channel 1).

BOTTOM: Topographic projectinn of left and right hemiretinas onto
lert and rijht occipital lobes. This configuration of the brain
accounts for the observed large amplituae of the VEP to the RIGHT
command in the right occipital electrode, 02-0z (see Fiqgure 7,
Channel 4), znd for the large amplitude of the VEP following tihe
LEFT command in the left occipital electrode, 01-0z (see Figure

7, Chanﬁ‘b’l 3)-

I m——————
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peam) projected through three red gelatin tfilters, with peak
transmission wavelengths CL £620 nanoneters, and a
checkertoard patterr cf alternating opague and clear sguares
subteruing an angle of approximately 77 milliradians with
each sjuarfe subtending 3.5 milliradians. A background light
of 166 lamberts illuminance is also present to allcw
accomodation to light. All experiments are conducted with

the subject seated inside a sound attenuated,

electrostatically and radio freyuency shielded room.

ANALYSIS

The analysis of the data is performed on-line by the
$30 computer. The calculaticn frocedure is inmplemented in !
& . Fortran II programming langjuage and operates on the training '
sat data to gen2rate a seguence of classification functions.
These linear functicns are used to classify each epoch of
the testing sets during which the robot is under control aund
each epoch constitutes a command tc ths robot, The f
pertormance of tue master to robot comma.u channel |1is
evaluated on the basis of a confusion patrix that 1is {
jenerated fcr each testing set. The rows of the matrix are

4350Clatsd  witn =ach cLt the possible coamands to the robot i

s
ang the coiupns are associated with each of the possitle é
i
N ; . . b R ! §
classificaticrs. Thue there is an additional column 1in the :
' contuslion watrix ol the default classification. Exanmgles

of the confusion matrix are provided in Taoles 4-2 and 4-3,
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FIGURE 4.2
SUBJECT SAD7, BCI-SDA CONFUSION MATRICES
These confusion matrices show the performance exhibit-
ed by subject SAD7 on an 8 step BCI-SDA analysis.
Training set epochs 1| to 280, testing set epochs 281 to
360. Four matrices are calculated using four posterior!
probability threshold values.
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FIGURE 4.3

P7u Classitication of SADS,/,3 &Y. 1240 Epocns.
fhese classirfication runctions resulted from a twenty
step BwD P7M run of stepwise discriminant analysis on
Tour experiments using subject 5AD. This is a test of
stanility over a three month perioa. [he jacknirfed
classirication perrormance simulates a testing set of
new data.
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The elements of this matrix are gyenecated py recording the
history ot the classitication process cu each epoch of a
given set. FPor exampls, if the correct coamand is that cf

the first row and the linear classification fuaction selects

i *

the one with the secend row, an =zantry is added to row cue,
ccluzn two. The diagcnal elements of the matrix contain the
correct classifications and the non-diagonal elements reveal
the erronous classifications.' Normalizing the entries in
the w@matrix provides cstimators of the conditional
protatilities c¢f coriect cowmand interpretation by the robot
anu these, in ccubination w.ith a priori probabilities for
the commands, form the basis for measuring the performance

Of tue master to robct communication chaiael.

.¢1‘
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|
PERFCRMANCE ;
i
MEASUREMENT
Mutual Received Received
Information Entropy Equivocation
Received 1 !
= Zp(b) 1n
Entropy & p(b)
1
Received 1
= ZP(a) Ep(bla) ifn |j~—rre==—=
Equivocation p (bja)
A B : |
P (b) =Z p(a) p(bla)
» .

Mutual p(bja)
= p(a) Zp(bla) 1n
Information :E p(a) p (bia)
A <)

A
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TABLES 1 to 12

Summaries of the results produced online during the experiments are shown
in Tables 1 through 12. The mutual in:s-  tion measure includes the robot in
the smart mouse conditions.

The maximum is the best 40 epoch performance seen
online.

Typically, nine recursions were performed, for a total of 360 epochs.

Al
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TABLE 1

SUMHARY OF EXPLRIMENTAL RESULTS

BESI TZSTINLG 2EAFOHIANCE (DUMB MOUSE)

Threshold = 0.60 Threshold = 0.25
Perforrance
{leasures Percent Percent Hutual Percent Mutual
Correct Default 1Infcrm. Correct Inform.

Subject - Date

SAL7 - Dez3 97.4 5.0 1.83 94.9 1.81
SACo - Ho1d 97.1 15.0 1.60 90.0 1.60
Jav2 - oc19 94,3 12.5 1.62 90.0 1.57
SALY - Feld 94,7 5.0 1.70 90.0 1.51
SALS - Le30 85.0 8.7 1,42 38.7 1. 46
EAE1 - Del1 3.2 32.5 1.15 76.9 1.01
: " MCB2 - Oc14 77.2 10.8 1.00 T4.2 1.00
5 EACT - 013 83.3 25.0 1.04 75.0 .96
i SAG4 - DezZ 75.0 40.0 .61 60.5 .<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>